segunda-feira, 30 de junho de 2014

3ª LEI DE NEWTON FÍSICA

Terceira Lei de Newton
x
Borges e Nicolau
x
Sabemos que as forças resultam da interação entre corpos. A terceira Lei de Newton, também denominada Princípio da Ação e Reação, refere-se às forças trocadas entre corpos. Ela afirma que:

Quando um corpo 1 exerce uma força F12 sobre um corpo 2, este exerce no primeiro outra força F21 de mesma intensidade, mesma direção e sentido oposto.

x
Uma das forças é chamada de AÇÃO e a outra de REAÇÃO. Assim, podemos dizer:
x
A toda força de ação corresponde uma força de reação de mesmaintensidade, mesma direção e sentido oposto.
x
A formulação original da terceira lei, apresentada na obra “Princípios Matemáticos de Filosofia Natural”, é a seguinte:
x
A toda ação há sempre oposta uma reação igual, ou, as ações mútuas de dois corpos um sobre o outro são sempre iguais e dirigidas a partes opostas.
x
Exemplificando: Considere uma caixa sobre uma cadeira. As forças que agem na caixa são: o peso P (ação da Terra) e a força normal FN (ação da cadeira):
x
x
Onde estão as correspondentes reações? A reação ao peso P da caixa é a força – Pcom que a caixa atrai a Terra. A reação da força FN é a força – FN da caixa sobre a cadeira.
x
x
Animações:
Terceira Lei de Newton
Clique aqui e aqui

Exercícios básicos
Nota: As notações de forças em negrito representam grandezas vetoriais.

Exercício 1:
As forças P e FN, descritas no resumo teórico, agem na caixa. Elas são consideradas um par de ação e reação?
x
Resolução: clique aqui

Exercício 2:
Analise a frase abaixo e responda se está certa ou errada: ”as forças de ação e reação não se equilibram pois estão aplicadas em corpos distintos”.
x
Resolução: clique aqui

Exercício 3:
Uma caixa tem peso igual a 10 N. Qual é a intensidade da força com que a caixa atrai a Terra?
x
Resolução: clique aqui

Exercício 4:
Dois blocos A e B estão em contato e sobre uma mesa horizontal. Uma força F, horizontal, é aplicada ao bloco A.
x
x
Seja FAB a intensidade da força que A exerce em B e FBA a intensidade da força que B exerce em A. Pode-se afirmar que:FAB
a) FAB > FBA
b) FAB < FBA
c) FAB = FBA
d) FAB ≥ FBA
e) FAB ≤ FBA
x
Resolução: clique aqui

Exercício 5:
Uma caixa está suspensa ao teto por meio de um fio AB. As forças que agem na caixa são o peso P e a força T, exercida pelo fio e que é chamada força de tração do fio.
x
x
a) Onde está aplicada a força - T, reação da força T? Faça uma figura explicativa.
b) Considerando o fio AB ideal, isto é, inextensível, perfeitamente flexível e de peso desprezível, represente a força que o teto exerce no ponto A do fio.

Resolução: clique aqui
 
Exercícios de revisão

Revisão/Ex 1:
(Unitau-SP)
Se os jurados de uma luta de boxe atribuíssem a vitória ao lutador que aplicasse uma força de maior intensidade em seu adversário, então:

a) o vencedor seria o de maior massa nos braços.
b) o vencedor seria o de maior musculatura.
c) o vencedor seria aquele que conseguisse aplicar maior aceleração ao soco.
d) o vencedor seria o que tivesse maior massa em seu braço e imprimisse maior aceleração ao soco.
e) a luta terminaria empatada.


Resolução: clique aqui

Revisão/Ex 2:


(UNESP)
Isaac Newton foi autor de marcantes contribuições à ciência Moderna. Uma delas foi a Lei da Gravitação Universal. Há quem diga que, para isso, Newton se inspirou na queda de uma maçã. Suponha que 
F1 seja a intensidade da força exercida pela Terra sobre a maçã e F2 a intensidade da força exercida pela  maçã sobre a Terra. Então:

a) 
F1 será muito maior do que F2 
b) F1 será um pouco maior do que F2
c) 
F1 será igual a F2
d) 
F1 será um pouco menor do que F2
e) 
F1 será muito menor do que F2

Resolução: clique aqui

Revisão/Ex 3:
(UEL-PR)
Um bloco de massa 5,0 kg está em queda livre em um local onde a aceleração da gravidade vale 9,8 m/s2. É correto afirmar a respeito que:


a) a intensidade da força que o bloco exerce na Terra vale 49 N.
b) a resultante das forças que atuam no bloco é nula.
c) a intensidade da força que a Terra exerce no bloco é menor que 49 N.
d) a aceleração de queda do bloco é nula.
e) o módulo da velocidade de queda do bloco aumenta inicialmente e depois diminui.


Resolução: clique aqui

Revisão/Ex 4:
(UFMG)
Uma pessoa está empurrando um caixote. A força que essa pessoa exerce sobre o caixote é igual e contrária à força que o caixote exerce sobre ela. Com relação a essa situação assinale a alternativa correta:

a) a pessoa poderá mover o caixote porque aplica a força sobre o caixote antes de ele poder anular essa força.
b) a pessoa poderá mover o caixote porque as forças citadas não atuam no mesmo corpo.
c) a pessoa poderá mover o caixote se tiver uma massa maior do que a massa do caixote.
d) a pessoa terá grande dificuldade para mover o caixote, pois nunca consegue exercer uma força sobre ele maior do que a força que esse caixote exerce sobre ela.


Resolução: clique aqui

Revisão/Ex 5:
(UFPB)
Um livro está em repouso num plano horizontal. Atuam sobre ele as forças peso (P) e normal (
FN).


Analise as afirmações abaixo:

I - A força de reação à força peso está aplicada no centro da Terra.
II - A força de reação a normal está aplicada sobre o plano horizontal.
III - O livro está em repouso e, portanto, normal e peso são forças de mesmas intensidades e direção, porém de sentidos contrários.
IV - A força normal é reação à força peso.

Pode-se dizer que:

a) todas as afirmações são verdadeiras.
b) apenas I e II são verdadeiras.
c) apenas I, II e III são verdadeiras.
d) apenas III e IV são verdadeiras.
e) apenas III é verdadeira.


Resolução: clique aqui

Fenômenos Ondulatórios

Termologia, Óptica e Ondas


Fenômenos Ondulatórios
x
Borges e Nicolau
x
Já estudamos os fenômenos da reflexão e refração. Vamos analisar mais alguns fenômenos ondulatórios.
x
1. Superposição de pulsos
xxxxxxxxx
Considere dois pulsos que se propagam em sentidos opostos em uma corda tensa. Ocorre interferência ou superposição quando os dois pulsos atingem simultaneamente o mesmo ponto P da corda. Admita que os pulsos tenham mesma largura e amplitudes a1 e a2 e vamos analisar dois tipos particulares de interferência:
x
1°) Interferência construtiva: A amplitude do pulso resultante é a soma das amplitudes dos pulsos que se superpõem: a = a1 + a2

x
2º) Interferência destrutiva: A amplitude do pulso resultante é a diferença entre as amplitudes dos pulsos que se superpõem: a = a1 - a2

x
Após a superposição cada pulso continua sua propagação como se nada tivesse ocorrido. Observação: No caso em que a1 = a2, resulta a = 0 e a interferência destrutiva é total.
x
x
2. Ondas estacionárias
x
A superposição de ondas periódicas obedece os mesmos princípios da superposição de pulsos. As ondas estacionárias resultam da superposição de ondas periódicas iguais e que se propagam em sentidos opostos. Obtém-se ondas estacionárias em uma corda tensa pela superposição da onda periódica produzida numa extremidade com a onda refletida na extremidade fixa.


As ondas estacionárias apresentam: 

1º) Pontos que não vibram (amplitude Amínimo = 0). Nestes pontos, denominados nós, ocorrem interferências destrutivas. 

2º) Pontos que vibram com máxima amplitude (Amáximo = 2a). Nestes pontos, denominados ventres, ocorrem interferências construtivas. 

3º) Pontos que vibram entre os nós e os ventres com amplitudes entre 0 e 2a. Sendoλ o comprimento de onda das ondas que interferem, podemos concluir que a distância entre dois nós consecutivos é igual a λ/2; entre dois ventres consecutivos é também λ/2; já entre um nó e um ventre consecutivo é λ/4. A figura em linha contínua representada acima é a envoltória das posições da corda em vibração (linhas tracejadas). Quando a corda vibra muito rapidamente, percebemos apenas a envoltória. A formação ondas estacionárias não ocorrem somente com ondas propagando-se em cordas, mas também com ondas sonoras, luminosas, ondas que se propagam na superfície de um líquido etc. 

3. Difração 

É o fenômeno que consiste em uma onda contornar um obstáculo. Vamos, por exemplo, produzir uma perturbação batendo com uma régua na superfície da água tranquila de um tanque. Forma-se uma onda reta que ao atingir uma barreira dotada de uma fenda, espalha-se em todas as direções a partir da fenda. A explicação da difração é dada pelo Princípio de Huygens: cada ponto da frente de onda que atravessa a fenda comporta-se como uma fonte de ondas secundárias.


O fenômeno da difração é nítido quando o comprimento da fenda ou do obstáculo for menor ou da ordem do comprimento de onda da onda incidente. O comprimento de onda da luz varia de 4.10-7 m a 7.10-7 m enquanto que o do som no ar varia de 1,7 cm a 17 m. A difração da luz ocorre em obstáculos e fendas de dimensões muito pequenas. Por isso, o som se difrata mais do que a luz.

Recorde pela animação a superposição de pulsos. 
Clique aqui 

Exercícios básicos: 

Exercício 1:
Dois pulsos são produzidos em uma corda tensa conforme indica a figura. Faça um esquema mostrando o pulso resultante quando os pulsos parciais estiverem exatamente superpostos (crista com crista, vale com vale).
x
Resolução: clique aqui
x
Exercício 2:
A figura representa dois pulsos propagando-se num mesmo meio e em sentidos opostos. Eles superpõem-se no ponto P desse meio.  Qual é o deslocamento do ponto P no instante da superposição? Analise os casos a), b) e c).
x
Resolução: clique aqui
xxxxxxx
Exercício 3:
Uma corda tensa de 1,0 m de comprimento vibra com frequência de 10 Hz. A onda estacionária que se estabelece na corda tem o aspecto indicado na figura. Determine o comprimento de onda e a velocidade de propagação das ondas que se superpõem.
x
x
Resolução: clique aqui
xxxxxxx
Exercício 4:
Ondas estacionárias são produzidas numa corda tensa de comprimento 1,2 m e fixa em suas extremidades. Observa-se a formação de 7 nós no total. Qual é o comprimento de onda das ondas que se superpõem?
xxxxxxx
Resolução: clique aqui
xxxxxxx
Exercício 5:
Você conversa com seu vizinho embora um muro de 2,5 m de altura os separe. Isto é possível devido o fenômeno da:
a) reflexão;
b) refração;
c) difração;
d) superposição de ondas; 
e) absorção das ondas pelo ar atmosférico.
xxxxx
Resolução: clique aqui


Exercícios de Revisão


Revisão/Ex 1:
(UFC-CE)
A figura I mostra, no instante t = 0, dois pulsos retangulares que se propagam em sentidos contrários, ao longo de uma corda horizontal esticada. A velocidade de cada pulso tem módulo igual a 2,0 cm/s. O pulso da esquerda tem 3,0 cm de largura e o da direita, 1,0 cm. Dentre as opções seguintes indique aquela que mostra o perfil da corda no instante t = 2,0 s.


Resolução: clique aqui

Revisão/Ex 2:
(UFRJ)
Uma onda na forma de um pulso senoidal tem altura máxima de 2,0 cm e se propaga para a direita com velocidade de 1,0.104 cm/s, num fio esticado e preso a uma parede fixa (figura 1). No instante considerado inicial, a frente de onda está a 50 cm da parede.


Determine o instante em que a superposição da onda incidente com a refletida tem a forma mostrada na figura 2, com altura máxima de 4,0 cm.


Resolução: clique aqui


Revisão/Ex 3:
(UFPB)
A superposição de ondas incidentes e refletidas com mesmas amplitudes, dá origem a uma figura de interferência denominada onda estacionária. Nesse sentido, considere uma situação em que uma corda tem uma das suas extremidades fixa a uma parede e a outra extremidade, conectada a um oscilador (fonte de vibração) que vibra com uma frequência de 80 Hz. A distância entre o vibrador e a parede é de 8,0 m.
Sabendo que as velocidades de propagação das ondas na corda são de 320 m/s, a onda estacionária na corda está melhor representada na figura:


Resolução: clique aqui

Revisão/Ex 4:
(UFTM)
Sílvia e Patrícia brincavam com uma corda quando perceberam que, prendendo uma das pontas num pequeno poste e agitando a outra ponta em um mesmo plano, faziam com que a corda oscilasse de forma que alguns de seus pontos permaneciam parados, ou seja, se estabelecia na corda uma onda estacionária.


A figura 1 mostra a configuração da corda quando Sílvia está brincando e a figura 2 mostra a configuração da mesma corda quando Patrícia está brincando.




Considerando-se iguais, nas duas situações, as velocidades de propagação das ondas na corda, e chamando de fS e fP as frequências com que Sílvia e Patrícia, respectivamente, estão fazendo a corda oscilar, pode-se afirmar corretamente que a relação fS / fP é igual a


a) 1,6.   
b) 1,2.   
c) 0,8.   
d) 0,6.   
e) 0,4. 

Resolução: clique aqui

Revisão/Ex 5:
(Vunesp-SP)
A figura a seguir representa esquematicamente as frentes de onda de uma onda reta na superfície da água, propagando-se da região 1 para a região 2. Essas regiões são idênticas e separadas por uma barreira com abertura.



A configuração das frentes de onda observada na região 2, que mostra o que aconteceu com a onda incidente ao passar pela abertura, caracteriza o fenômeno da:


a) absorção.
b) difração.
c) dispersão.
d) polarização. 
e) refração. 

Arquivo do blog

Quem sou eu

Minha foto
joao pessoa, paraiba
Professor de matemática,física e química.Aulas do ensino fundamental ao ensino médio Atendimento de segunda (das 9hs as 21hs) a sábado (das 9hs as até 12horas).

SETTE CURSOS (83)9114-3000/8616-2991/8153-9869